النتائج 1 إلى 5 من 5
  1. #1
    الصورة الرمزية ahmadali_muh
    ahmadali_muh غير متواجد حالياً عضو المتداول العربي
    تاريخ التسجيل
    Aug 2024
    الإقامة
    إندونيسيا
    المشاركات
    2

    افتراضي كيفية برمجة تطبيق Price Action Trading

    بسم الله الرحمن الرحيم
    يمكن البرمجة بلغة python أو pine
    في
    https://www.tradingview.com/scripts

    Price Action Trading: An Overview

    Price action trading is a method of trading that relies on historical prices to inform trading decisions. Instead of relying on indicators, algorithms, or fundamental analysis, price action traders focus on reading and interpreting the movement of prices on a chart. This approach is based on the belief that all relevant information, such as market sentiment and potential future price movements, is already reflected in the price and can be observed through patterns and trends.

    Core Concepts of Price Action Trading
    Candlestick Patterns:

    Candlesticks represent price movements within a specific time frame (e.g., 1 minute, 5 minutes, 1 day).
    Patterns such as Doji, Engulfing, Hammer, and Shooting Star provide visual cues about market sentiment, signaling potential reversals or continuations.
    Support and Resistance Levels:

    Support is a price level where buying interest is strong enough to prevent the price from falling further.
    Resistance is a price level where selling interest is strong enough to prevent the price from rising further.
    Identifying these levels helps traders predict price bounces or breakouts.
    Trend Lines:

    Trend lines are drawn along identifiable price highs or lows to visualize the direction of the market.
    They help traders identify ongoing trends and potential reversal points.
    Market Structure:

    Market structure includes higher highs, higher lows (in an uptrend), lower highs, and lower lows (in a downtrend).
    Understanding the structure helps traders align with the prevailing trend and spot reversals.
    Price Patterns:

    Patterns such as Head and Shoulders, Double Top/Bottom, and Triangles form the backbone of price action trading.
    These patterns indicate potential price movements based on historical behavior.
    Why Every Forex Trading Professional Should Use Price Action Trading
    Simplicity and Clarity:

    Price action is straightforward, focusing purely on price movements. It eliminates the noise of lagging indicators and allows traders to make decisions based on clear visual cues.
    Adaptability Across Markets:

    Price action strategies are applicable in all markets, including Forex, stocks, commodities, and indices. Since price is a universal element, the principles remain consistent.
    Better Risk Management:

    With a clear understanding of support and resistance levels, traders can place stop-loss orders more effectively, managing risk with precision.
    It also allows for the identification of high-probability trade setups, which can improve the risk-reward ratio.
    Real-Time Market Understanding:

    Price action traders are in tune with the market's current state, enabling them to react swiftly to market changes without waiting for lagging indicators.
    Reduced Dependence on External Tools:

    By focusing on price movements alone, traders reduce their dependence on complex indicators or external data, streamlining their trading process.
    Strategies to Maximize Return Using Price Action Trading
    Breakout Strategy:

    Identify key support and resistance levels.
    Trade when the price breaks through these levels, often with increased volume. This indicates a strong momentum in the breakout direction.
    Stop-Loss can be placed just below the broken resistance or above the broken support.
    Pullback Strategy:

    Wait for a price to pull back to a previously broken support/resistance level after a breakout.
    Enter the trade in the direction of the initial breakout when the price respects this level and continues in the original direction.
    Stop-Loss is placed just beyond the pullback.
    Trend Following Strategy:

    Identify the prevailing trend using trend lines or moving averages (as a guide, not the primary decision-making tool).
    Enter trades in the direction of the trend during price pullbacks to key levels or trend lines.
    Stop-Loss is placed below the previous swing low in an uptrend or above the swing high in a downtrend.
    Reversal Strategy:

    Look for signs of exhaustion in the current trend, such as the formation of reversal candlestick patterns (e.g., Pin Bar, Engulfing Pattern) at significant support or resistance levels.
    Enter a trade in the opposite direction of the current trend once the reversal is confirmed.
    Stop-Loss is placed above the recent high in a downtrend reversal or below the recent low in an uptrend reversal.
    Range Trading Strategy:

    Identify a range-bound market where the price oscillates between support and resistance levels.
    Enter long trades at support and short trades at resistance.
    Stop-Loss is placed just outside the range on the opposite side of the trade.
    Conclusion
    Price action trading is a powerful and versatile approach that every Forex trading professional should consider. It provides clear, real-time insights into market behavior, enhances risk management, and can be adapted to various market conditions. By mastering price action, traders can develop a deeper understanding of market dynamics, leading to more informed and profitable trading decisions.

    نبدأ بلغة نسخ البرنامج pseudocode أي وصف نسخي أي فقرات لغوية له
    وبالأدق خوارزمة البرنامج نسبة للخوارزمي رحمه الله تعالى
    your description covered the whole system lifecycle please add pseudocode within

    Certainly! Below, I'll integrate pseudocode within the explanation to help clarify how you might implement price action trading strategies programmatically.

    Core Concepts of Price Action Trading with Pseudocode
    Candlestick Patterns

    Identify candlestick patterns that signal potential market movements.


    def identify_candlestick_pattern(candles):
    if candles[-1].open > candles[-1].close and candles[-1].body_length < candles[-2].body_length:
    return "Doji" # Potential reversal signal
    elif candles[-1].open < candles[-1].close and candles[-1].body_length > candles[-2].body_length:
    return "Engulfing Bullish" # Bullish reversal signal
    # Add other patterns as needed
    return None
    Support and Resistance Levels

    Detect key support and resistance levels.

    def find_support_resistance(prices):
    support = min(prices[-50:]) # Support is the lowest price in the last 50 candles
    resistance = max(prices[-50:]) # Resistance is the highest price in the last 50 candles
    return support, resistance
    Trend Lines

    Identify and draw trend lines to determine market direction.

    def draw_trend_line(prices):
    highs = [price.high for price in prices]
    lows = [price.low for price in prices]
    trend_line_up = max(lows[-50:]) # Uptrend line based on recent lows
    trend_line_down = min(highs[-50:]) # Downtrend line based on recent highs
    return trend_line_up, trend_line_down
    Market Structure

    Analyze the market structure to identify trends and potential reversals.

    def analyze_market_structure(prices):
    if prices[-1] > prices[-2] and prices[-2] > prices[-3]:
    return "Uptrend"
    elif prices[-1] < prices[-2] and prices[-2] < prices[-3]:
    return "Downtrend"
    return "Sideways"
    Price Patterns

    Detect and trade common price patterns.

    def detect_price_pattern(prices):
    if prices[-1] > prices[-2] > prices[-3] and prices[-3] < prices[-4]:
    return "Head and Shoulders" # Potential reversal pattern
    elif prices[-1] < prices[-2] < prices[-3] and prices[-3] > prices[-4]:
    return "Double Bottom" # Bullish reversal signal
    return None
    Strategies to Maximize Return Using Price Action Trading with Pseudocode
    Breakout Strategy

    Trade on breakouts of support/resistance levels.

    def breakout_strategy(prices, support, resistance):
    if prices[-1] > resistance:
    enter_trade("BUY")
    set_stop_loss(support)
    elif prices[-1] < support:
    enter_trade("SELL")
    set_stop_loss(resistance)
    Pullback Strategy

    Enter trades on pullbacks after a breakout.

    def pullback_strategy(prices, breakout_level):
    if prices[-1] < breakout_level and prices[-1] > prices[-2]:
    enter_trade("BUY")
    set_stop_loss(breakout_level - 0.02)
    elif prices[-1] > breakout_level and prices[-1] < prices[-2]:
    enter_trade("SELL")
    set_stop_loss(breakout_level + 0.02)
    Trend Following Strategy

    Trade in the direction of the current trend.

    def trend_following_strategy(prices, trend_line):
    if prices[-1] > trend_line:
    enter_trade("BUY")
    set_stop_loss(trend_line - 0.02)
    elif prices[-1] < trend_line:
    enter_trade("SELL")
    set_stop_loss(trend_line + 0.02)
    Reversal Strategy

    Detect and trade market reversals.

    def reversal_strategy(prices, support, resistance):
    if prices[-1] < support and detect_price_pattern(prices) == "Double Bottom":
    enter_trade("BUY")
    set_stop_loss(support - 0.02)
    elif prices[-1] > resistance and detect_price_pattern(prices) == "Head and Shoulders":
    enter_trade("SELL")
    set_stop_loss(resistance + 0.02)
    Range Trading Strategy

    Trade within a defined price range.

    def range_trading_strategy(prices, support, resistance):
    if prices[-1] <= support:
    enter_trade("BUY")
    set_stop_loss(support - 0.02)
    elif prices[-1] >= resistance:
    enter_trade("SELL")
    set_stop_loss(resistance + 0.02)
    Conclusion with Pseudocode Integration
    Incorporating price action trading strategies programmatically involves using key price levels, patterns, and market structures to make informed trading decisions. By developing functions to identify candlestick patterns, support/resistance levels, trends, and price patterns, traders can automate their strategies and enhance their trading efficiency. These strategies, when coded into a trading algorithm, allow for consistent and disciplined trading behavior that can potentially maximize returns while managing risk effectively.
    نبدأ لغة بيثون
    in.py add python code and keep text as comments for the whole lifecycle system

    Certainly! Below is a Python script that encapsulates the entire lifecycle of a price action trading system, starting from main.py. The script includes comments to guide you through the different stages, from initialization to strategy execution.

    # main.py

    # 1. Import necessary modules and define global variables
    import datetime

    # Placeholder for candlestick data structure
    class Candle:
    def __init__(self, open, close, high, low, time):
    self.open = open
    self.close = close
    self.high = high
    self.low = low
    self.time = time
    self.body_length = abs(self.close - self.open)

    # 2. Define functions to analyze price action data

    # Function to identify candlestick patterns
    def identify_candlestick_pattern(candles):
    if candles[-1].open > candles[-1].close and candles[-1].body_length < candles[-2].body_length:
    return "Doji" # Potential reversal signal
    elif candles[-1].open < candles[-1].close and candles[-1].body_length > candles[-2].body_length:
    return "Engulfing Bullish" # Bullish reversal signal
    return None

    # Function to find support and resistance levels
    def find_support_resistance(prices):
    support = min(prices[-50:]) # Support is the lowest price in the last 50 candles
    resistance = max(prices[-50:]) # Resistance is the highest price in the last 50 candles
    return support, resistance

    # Function to draw trend lines
    def draw_trend_line(prices):
    highs = [price.high for price in prices]
    lows = [price.low for price in prices]
    trend_line_up = max(lows[-50:]) # Uptrend line based on recent lows
    trend_line_down = min(highs[-50:]) # Downtrend line based on recent highs
    return trend_line_up, trend_line_down

    # Function to analyze market structure
    def analyze_market_structure(prices):
    if prices[-1] > prices[-2] and prices[-2] > prices[-3]:
    return "Uptrend"
    elif prices[-1] < prices[-2] and prices[-2] < prices[-3]:
    return "Downtrend"
    return "Sideways"

    # Function to detect price patterns
    def detect_price_pattern(prices):
    if prices[-1] > prices[-2] > prices[-3] and prices[-3] < prices[-4]:
    return "Head and Shoulders" # Potential reversal pattern
    elif prices[-1] < prices[-2] < prices[-3] and prices[-3] > prices[-4]:
    return "Double Bottom" # Bullish reversal signal
    return None

    # 3. Define trading strategies based on price action

    # Breakout strategy
    def breakout_strategy(prices, support, resistance):
    if prices[-1] > resistance:
    enter_trade("BUY")
    set_stop_loss(support)
    elif prices[-1] < support:
    enter_trade("SELL")
    set_stop_loss(resistance)

    # Pullback strategy
    def pullback_strategy(prices, breakout_level):
    if prices[-1] < breakout_level and prices[-1] > prices[-2]:
    enter_trade("BUY")
    set_stop_loss(breakout_level - 0.02)
    elif prices[-1] > breakout_level and prices[-1] < prices[-2]:
    enter_trade("SELL")
    set_stop_loss(breakout_level + 0.02)

    # Trend following strategy
    def trend_following_strategy(prices, trend_line):
    if prices[-1] > trend_line:
    enter_trade("BUY")
    set_stop_loss(trend_line - 0.02)
    elif prices[-1] < trend_line:
    enter_trade("SELL")
    set_stop_loss(trend_line + 0.02)

    # Reversal strategy
    def reversal_strategy(prices, support, resistance):
    if prices[-1] < support and detect_price_pattern(prices) == "Double Bottom":
    enter_trade("BUY")
    set_stop_loss(support - 0.02)
    elif prices[-1] > resistance and detect_price_pattern(prices) == "Head and Shoulders":
    enter_trade("SELL")
    set_stop_loss(resistance + 0.02)

    # Range trading strategy
    def range_trading_strategy(prices, support, resistance):
    if prices[-1] <= support:
    enter_trade("BUY")
    set_stop_loss(support - 0.02)
    elif prices[-1] >= resistance:
    enter_trade("SELL")
    set_stop_loss(resistance + 0.02)

    # 4. Define helper functions for trading operations

    # Function to enter a trade
    def enter_trade(action):
    print(f"Trade action: {action}")
    # Add code to execute the trade

    # Function to set a stop loss
    def set_stop_loss(level):
    print(f"Setting stop loss at: {level}")
    # Add code to set stop loss

    # 5. Implement the trading logic within the main function

    def main():
    # Assume this function fetches and updates the price data (candles) in real-time
    prices = fetch_price_data()

    # Step 1: Identify key levels and market conditions
    support, resistance = find_support_resistance(prices)
    trend_line_up, trend_line_down = draw_trend_line(prices)
    market_structure = analyze_market_structure(prices)

    # Step 2: Decide on strategy based on market conditions
    if market_structure == "Uptrend":
    trend_following_strategy(prices, trend_line_up)
    elif market_structure == "Downtrend":
    trend_following_strategy(prices, trend_line_down)
    elif market_structure == "Sideways":
    range_trading_strategy(prices, support, resistance)

    # Step 3: Look for breakout opportunities
    breakout_strategy(prices, support, resistance)

    # Step 4: Apply pullback strategy if a breakout has occurred
    pullback_strategy(prices, resistance if prices[-1] > resistance else support)

    # Step 5: Detect and trade reversals
    reversal_strategy(prices, support, resistance)

    # 6. Function to fetch real-time price data
    def fetch_price_data():
    # This function would connect to a broker's API or a data source to fetch live market data
    # Here we'll simulate with dummy data for demonstration purposes
    current_time = datetime.datetime.now()
    # Simulate some candlestick data (open, close, high, low, time)
    candles = [
    Candle(1.1, 1.2, 1.3, 1.0, current_time - datetime.timedelta(minutes=5)),
    Candle(1.2, 1.1, 1.25, 1.05, current_time - datetime.timedelta(minutes=4)),
    Candle(1.1, 1.15, 1.2, 1.1, current_time - datetime.timedelta(minutes=3)),
    Candle(1.15, 1.17, 1.19, 1.14, current_time - datetime.timedelta(minutes=2)),
    Candle(1.17, 1.18, 1.22, 1.16, current_time - datetime.timedelta(minutes=1)),
    ]
    return candles

    # 7. Run the main function to execute the trading system
    if __name__ == "__main__":
    main()
    Explanation
    Imports and Global Variables: The script imports necessary modules and defines the Candle class to represent candlestick data.

    Analysis Functions: The script defines various functions to identify candlestick patterns, support/resistance levels, trend lines, market structure, and price patterns.

    Trading Strategies: The script includes functions to implement different price action trading strategies like breakout, pullback, trend following, reversal, and range trading.

    Helper Functions: The script includes helper functions for trade operations such as entering a trade and setting a stop loss.

    Main Trading Logic: The main() function is the core of the system, where the trading logic is implemented. It fetches the price data, analyzes the market, and applies the appropriate strategy.

    Fetch Price Data: This function simulates fetching real-time price data. In a real application, this would connect to a broker's API or data feed.

    Execution: The main() function is executed when the script runs, initiating the trading process.

    This script outlines a simple price action trading system, providing a foundation that can be expanded with more sophisticated features and integrations as needed.

    والسلام

  2. #2
    الصورة الرمزية Algo_Master
    Algo_Master متواجد حالياً مشرف المتداول العربي
    تاريخ التسجيل
    Dec 2011
    الإقامة
    مصر
    المشاركات
    1,091

    افتراضي

    اقتباس المشاركة الأصلية كتبت بواسطة ahmadali_muh مشاهدة المشاركة
    بسم الله الرحمن الرحيم
    يمكن البرمجة بلغة python أو pine
    في
    https://www.tradingview.com/scripts

    Price Action Trading: An Overview

    Price action trading is a method of trading that relies on historical prices to inform trading decisions. Instead of relying on indicators, algorithms, or fundamental analysis, price action traders focus on reading and interpreting the movement of prices on a chart. This approach is based on the belief that all relevant information, such as market sentiment and potential future price movements, is already reflected in the price and can be observed through patterns and trends.

    Core Concepts of Price Action Trading
    Candlestick Patterns:

    Candlesticks represent price movements within a specific time frame (e.g., 1 minute, 5 minutes, 1 day).
    Patterns such as Doji, Engulfing, Hammer, and Shooting Star provide visual cues about market sentiment, signaling potential reversals or continuations.
    Support and Resistance Levels:

    Support is a price level where buying interest is strong enough to prevent the price from falling further.
    Resistance is a price level where selling interest is strong enough to prevent the price from rising further.
    Identifying these levels helps traders predict price bounces or breakouts.
    Trend Lines:

    Trend lines are drawn along identifiable price highs or lows to visualize the direction of the market.
    They help traders identify ongoing trends and potential reversal points.
    Market Structure:

    Market structure includes higher highs, higher lows (in an uptrend), lower highs, and lower lows (in a downtrend).
    Understanding the structure helps traders align with the prevailing trend and spot reversals.
    Price Patterns:

    Patterns such as Head and Shoulders, Double Top/Bottom, and Triangles form the backbone of price action trading.
    These patterns indicate potential price movements based on historical behavior.
    Why Every Forex Trading Professional Should Use Price Action Trading
    Simplicity and Clarity:

    Price action is straightforward, focusing purely on price movements. It eliminates the noise of lagging indicators and allows traders to make decisions based on clear visual cues.
    Adaptability Across Markets:

    Price action strategies are applicable in all markets, including Forex, stocks, commodities, and indices. Since price is a universal element, the principles remain consistent.
    Better Risk Management:

    With a clear understanding of support and resistance levels, traders can place stop-loss orders more effectively, managing risk with precision.
    It also allows for the identification of high-probability trade setups, which can improve the risk-reward ratio.
    Real-Time Market Understanding:

    Price action traders are in tune with the market's current state, enabling them to react swiftly to market changes without waiting for lagging indicators.
    Reduced Dependence on External Tools:

    By focusing on price movements alone, traders reduce their dependence on complex indicators or external data, streamlining their trading process.
    Strategies to Maximize Return Using Price Action Trading
    Breakout Strategy:

    Identify key support and resistance levels.
    Trade when the price breaks through these levels, often with increased volume. This indicates a strong momentum in the breakout direction.
    Stop-Loss can be placed just below the broken resistance or above the broken support.
    Pullback Strategy:

    Wait for a price to pull back to a previously broken support/resistance level after a breakout.
    Enter the trade in the direction of the initial breakout when the price respects this level and continues in the original direction.
    Stop-Loss is placed just beyond the pullback.
    Trend Following Strategy:

    Identify the prevailing trend using trend lines or moving averages (as a guide, not the primary decision-making tool).
    Enter trades in the direction of the trend during price pullbacks to key levels or trend lines.
    Stop-Loss is placed below the previous swing low in an uptrend or above the swing high in a downtrend.
    Reversal Strategy:

    Look for signs of exhaustion in the current trend, such as the formation of reversal candlestick patterns (e.g., Pin Bar, Engulfing Pattern) at significant support or resistance levels.
    Enter a trade in the opposite direction of the current trend once the reversal is confirmed.
    Stop-Loss is placed above the recent high in a downtrend reversal or below the recent low in an uptrend reversal.
    Range Trading Strategy:

    Identify a range-bound market where the price oscillates between support and resistance levels.
    Enter long trades at support and short trades at resistance.
    Stop-Loss is placed just outside the range on the opposite side of the trade.
    Conclusion
    Price action trading is a powerful and versatile approach that every Forex trading professional should consider. It provides clear, real-time insights into market behavior, enhances risk management, and can be adapted to various market conditions. By mastering price action, traders can develop a deeper understanding of market dynamics, leading to more informed and profitable trading decisions.

    نبدأ بلغة نسخ البرنامج pseudocode أي وصف نسخي أي فقرات لغوية له
    وبالأدق خوارزمة البرنامج نسبة للخوارزمي رحمه الله تعالى
    your description covered the whole system lifecycle please add pseudocode within

    Certainly! Below, I'll integrate pseudocode within the explanation to help clarify how you might implement price action trading strategies programmatically.

    Core Concepts of Price Action Trading with Pseudocode
    Candlestick Patterns

    Identify candlestick patterns that signal potential market movements.


    def identify_candlestick_pattern(candles):
    if candles[-1].open > candles[-1].close and candles[-1].body_length < candles[-2].body_length:
    return "Doji" # Potential reversal signal
    elif candles[-1].open < candles[-1].close and candles[-1].body_length > candles[-2].body_length:
    return "Engulfing Bullish" # Bullish reversal signal
    # Add other patterns as needed
    return None
    Support and Resistance Levels

    Detect key support and resistance levels.

    def find_support_resistance(prices):
    support = min(prices[-50:]) # Support is the lowest price in the last 50 candles
    resistance = max(prices[-50:]) # Resistance is the highest price in the last 50 candles
    return support, resistance
    Trend Lines

    Identify and draw trend lines to determine market direction.

    def draw_trend_line(prices):
    highs = [price.high for price in prices]
    lows = [price.low for price in prices]
    trend_line_up = max(lows[-50:]) # Uptrend line based on recent lows
    trend_line_down = min(highs[-50:]) # Downtrend line based on recent highs
    return trend_line_up, trend_line_down
    Market Structure

    Analyze the market structure to identify trends and potential reversals.

    def analyze_market_structure(prices):
    if prices[-1] > prices[-2] and prices[-2] > prices[-3]:
    return "Uptrend"
    elif prices[-1] < prices[-2] and prices[-2] < prices[-3]:
    return "Downtrend"
    return "Sideways"
    Price Patterns

    Detect and trade common price patterns.

    def detect_price_pattern(prices):
    if prices[-1] > prices[-2] > prices[-3] and prices[-3] < prices[-4]:
    return "Head and Shoulders" # Potential reversal pattern
    elif prices[-1] < prices[-2] < prices[-3] and prices[-3] > prices[-4]:
    return "Double Bottom" # Bullish reversal signal
    return None
    Strategies to Maximize Return Using Price Action Trading with Pseudocode
    Breakout Strategy

    Trade on breakouts of support/resistance levels.

    def breakout_strategy(prices, support, resistance):
    if prices[-1] > resistance:
    enter_trade("BUY")
    set_stop_loss(support)
    elif prices[-1] < support:
    enter_trade("SELL")
    set_stop_loss(resistance)
    Pullback Strategy

    Enter trades on pullbacks after a breakout.

    def pullback_strategy(prices, breakout_level):
    if prices[-1] < breakout_level and prices[-1] > prices[-2]:
    enter_trade("BUY")
    set_stop_loss(breakout_level - 0.02)
    elif prices[-1] > breakout_level and prices[-1] < prices[-2]:
    enter_trade("SELL")
    set_stop_loss(breakout_level + 0.02)
    Trend Following Strategy

    Trade in the direction of the current trend.

    def trend_following_strategy(prices, trend_line):
    if prices[-1] > trend_line:
    enter_trade("BUY")
    set_stop_loss(trend_line - 0.02)
    elif prices[-1] < trend_line:
    enter_trade("SELL")
    set_stop_loss(trend_line + 0.02)
    Reversal Strategy

    Detect and trade market reversals.

    def reversal_strategy(prices, support, resistance):
    if prices[-1] < support and detect_price_pattern(prices) == "Double Bottom":
    enter_trade("BUY")
    set_stop_loss(support - 0.02)
    elif prices[-1] > resistance and detect_price_pattern(prices) == "Head and Shoulders":
    enter_trade("SELL")
    set_stop_loss(resistance + 0.02)
    Range Trading Strategy

    Trade within a defined price range.

    def range_trading_strategy(prices, support, resistance):
    if prices[-1] <= support:
    enter_trade("BUY")
    set_stop_loss(support - 0.02)
    elif prices[-1] >= resistance:
    enter_trade("SELL")
    set_stop_loss(resistance + 0.02)
    Conclusion with Pseudocode Integration
    Incorporating price action trading strategies programmatically involves using key price levels, patterns, and market structures to make informed trading decisions. By developing functions to identify candlestick patterns, support/resistance levels, trends, and price patterns, traders can automate their strategies and enhance their trading efficiency. These strategies, when coded into a trading algorithm, allow for consistent and disciplined trading behavior that can potentially maximize returns while managing risk effectively.
    نبدأ لغة بيثون
    in.py add python code and keep text as comments for the whole lifecycle system

    Certainly! Below is a Python script that encapsulates the entire lifecycle of a price action trading system, starting from main.py. The script includes comments to guide you through the different stages, from initialization to strategy execution.

    # main.py

    # 1. Import necessary modules and define global variables
    import datetime

    # Placeholder for candlestick data structure
    class Candle:
    def __init__(self, open, close, high, low, time):
    self.open = open
    self.close = close
    self.high = high
    self.low = low
    self.time = time
    self.body_length = abs(self.close - self.open)

    # 2. Define functions to analyze price action data

    # Function to identify candlestick patterns
    def identify_candlestick_pattern(candles):
    if candles[-1].open > candles[-1].close and candles[-1].body_length < candles[-2].body_length:
    return "Doji" # Potential reversal signal
    elif candles[-1].open < candles[-1].close and candles[-1].body_length > candles[-2].body_length:
    return "Engulfing Bullish" # Bullish reversal signal
    return None

    # Function to find support and resistance levels
    def find_support_resistance(prices):
    support = min(prices[-50:]) # Support is the lowest price in the last 50 candles
    resistance = max(prices[-50:]) # Resistance is the highest price in the last 50 candles
    return support, resistance

    # Function to draw trend lines
    def draw_trend_line(prices):
    highs = [price.high for price in prices]
    lows = [price.low for price in prices]
    trend_line_up = max(lows[-50:]) # Uptrend line based on recent lows
    trend_line_down = min(highs[-50:]) # Downtrend line based on recent highs
    return trend_line_up, trend_line_down

    # Function to analyze market structure
    def analyze_market_structure(prices):
    if prices[-1] > prices[-2] and prices[-2] > prices[-3]:
    return "Uptrend"
    elif prices[-1] < prices[-2] and prices[-2] < prices[-3]:
    return "Downtrend"
    return "Sideways"

    # Function to detect price patterns
    def detect_price_pattern(prices):
    if prices[-1] > prices[-2] > prices[-3] and prices[-3] < prices[-4]:
    return "Head and Shoulders" # Potential reversal pattern
    elif prices[-1] < prices[-2] < prices[-3] and prices[-3] > prices[-4]:
    return "Double Bottom" # Bullish reversal signal
    return None

    # 3. Define trading strategies based on price action

    # Breakout strategy
    def breakout_strategy(prices, support, resistance):
    if prices[-1] > resistance:
    enter_trade("BUY")
    set_stop_loss(support)
    elif prices[-1] < support:
    enter_trade("SELL")
    set_stop_loss(resistance)

    # Pullback strategy
    def pullback_strategy(prices, breakout_level):
    if prices[-1] < breakout_level and prices[-1] > prices[-2]:
    enter_trade("BUY")
    set_stop_loss(breakout_level - 0.02)
    elif prices[-1] > breakout_level and prices[-1] < prices[-2]:
    enter_trade("SELL")
    set_stop_loss(breakout_level + 0.02)

    # Trend following strategy
    def trend_following_strategy(prices, trend_line):
    if prices[-1] > trend_line:
    enter_trade("BUY")
    set_stop_loss(trend_line - 0.02)
    elif prices[-1] < trend_line:
    enter_trade("SELL")
    set_stop_loss(trend_line + 0.02)

    # Reversal strategy
    def reversal_strategy(prices, support, resistance):
    if prices[-1] < support and detect_price_pattern(prices) == "Double Bottom":
    enter_trade("BUY")
    set_stop_loss(support - 0.02)
    elif prices[-1] > resistance and detect_price_pattern(prices) == "Head and Shoulders":
    enter_trade("SELL")
    set_stop_loss(resistance + 0.02)

    # Range trading strategy
    def range_trading_strategy(prices, support, resistance):
    if prices[-1] <= support:
    enter_trade("BUY")
    set_stop_loss(support - 0.02)
    elif prices[-1] >= resistance:
    enter_trade("SELL")
    set_stop_loss(resistance + 0.02)

    # 4. Define helper functions for trading operations

    # Function to enter a trade
    def enter_trade(action):
    print(f"Trade action: {action}")
    # Add code to execute the trade

    # Function to set a stop loss
    def set_stop_loss(level):
    print(f"Setting stop loss at: {level}")
    # Add code to set stop loss

    # 5. Implement the trading logic within the main function

    def main():
    # Assume this function fetches and updates the price data (candles) in real-time
    prices = fetch_price_data()

    # Step 1: Identify key levels and market conditions
    support, resistance = find_support_resistance(prices)
    trend_line_up, trend_line_down = draw_trend_line(prices)
    market_structure = analyze_market_structure(prices)

    # Step 2: Decide on strategy based on market conditions
    if market_structure == "Uptrend":
    trend_following_strategy(prices, trend_line_up)
    elif market_structure == "Downtrend":
    trend_following_strategy(prices, trend_line_down)
    elif market_structure == "Sideways":
    range_trading_strategy(prices, support, resistance)

    # Step 3: Look for breakout opportunities
    breakout_strategy(prices, support, resistance)

    # Step 4: Apply pullback strategy if a breakout has occurred
    pullback_strategy(prices, resistance if prices[-1] > resistance else support)

    # Step 5: Detect and trade reversals
    reversal_strategy(prices, support, resistance)

    # 6. Function to fetch real-time price data
    def fetch_price_data():
    # This function would connect to a broker's API or a data source to fetch live market data
    # Here we'll simulate with dummy data for demonstration purposes
    current_time = datetime.datetime.now()
    # Simulate some candlestick data (open, close, high, low, time)
    candles = [
    Candle(1.1, 1.2, 1.3, 1.0, current_time - datetime.timedelta(minutes=5)),
    Candle(1.2, 1.1, 1.25, 1.05, current_time - datetime.timedelta(minutes=4)),
    Candle(1.1, 1.15, 1.2, 1.1, current_time - datetime.timedelta(minutes=3)),
    Candle(1.15, 1.17, 1.19, 1.14, current_time - datetime.timedelta(minutes=2)),
    Candle(1.17, 1.18, 1.22, 1.16, current_time - datetime.timedelta(minutes=1)),
    ]
    return candles

    # 7. Run the main function to execute the trading system
    if __name__ == "__main__":
    main()
    Explanation
    Imports and Global Variables: The script imports necessary modules and defines the Candle class to represent candlestick data.

    Analysis Functions: The script defines various functions to identify candlestick patterns, support/resistance levels, trend lines, market structure, and price patterns.

    Trading Strategies: The script includes functions to implement different price action trading strategies like breakout, pullback, trend following, reversal, and range trading.

    Helper Functions: The script includes helper functions for trade operations such as entering a trade and setting a stop loss.

    Main Trading Logic: The main() function is the core of the system, where the trading logic is implemented. It fetches the price data, analyzes the market, and applies the appropriate strategy.

    Fetch Price Data: This function simulates fetching real-time price data. In a real application, this would connect to a broker's API or data feed.

    Execution: The main() function is executed when the script runs, initiating the trading process.

    This script outlines a simple price action trading system, providing a foundation that can be expanded with more sophisticated features and integrations as needed.

    والسلام
    و عليكم السلام و رحمه الله و بركاته

    بارك الله لك اخى الكريم ahmadali_muh

    من المعروف ان منصه "تريدينج فيو" من المنصات الحديثه التى تعمل اون لاين و تتميز بامكانيات العرض الرائعه حقيقا و يتم برمجه اسكربتاتها بالبايثون

    اكمل فى عرض اعمالك اخى ، فلك كل التحيه و الاحترام و التقدير من منتدى المتداول العربى اداره و اعضاء ,,,
    آخر تعديل بواسطة Algo_Master ، 28-08-2024 الساعة 12:21 AM
    توقيع العضو
    تخيل _ أبتكر _ شخبط _ برمج _ أختبر _ عدل _ أختبر _ أنجح

  3. #3
    الصورة الرمزية ahmadali_muh
    ahmadali_muh غير متواجد حالياً عضو المتداول العربي
    تاريخ التسجيل
    Aug 2024
    الإقامة
    إندونيسيا
    المشاركات
    2

    افتراضي

    اقتباس المشاركة الأصلية كتبت بواسطة Algo_Master مشاهدة المشاركة
    و عليكم السلام و رحمه الله و بركاته
    بارك الله لك اخى الكريم ahmadali_muh
    من المعروف ان منصه "تريدينج فيو" من المنصات الحديثه التى تعمل اون لاين و تتميز بامكانيات العرض الرائعه حقيقا و يتم برمجه اسكربتاتها بالبايثون
    اكمل فى عرض اعمالك اخى ، فلك كل التحيه و الاحترام و التقدير من منتدى المتداول العربى اداره و اعضاء ,,,
    جزاكم الله تعالى خيرا علي حسن استضافتكم وأبشركم بمزيد من الأعمال الإختراعية ولا سيما من أعمال "شيخ عبد القادر الجيلاني" وعمره 11 سنة وهو ماهر بفضل الله تعالى في القرآن الكريم الذي برمج نشره في 133 لغة
    https://muhammad.com/137-koran/index.html
    والحديث الشريف
    https://youtu.be/gspz_81TrHk?si=WPr072OVKFQCSOhm
    حيث نقل منهج الأزهر كاملا 75 كتابا مجانا online
    https://Muhammad.com/class-access/index.html
    ولغة بايثون في تصميم الذكاء الإصطناعي لنظام المستشفيات
    https://mydsolutions.com/dokter
    ونظام تجارة الأسهم والسندات - تحت التصميم هنا:
    https://seabankasia.mydsolutions.com/trade
    وهو بصدد تصميم
    Black Box Trading Box
    emulating Jim Simon
    أكرر شكري على دماثة خلقكم وحسن طويتكم وصفاء سريرتكم
    ملحوطة: "شيخ عبد القادر الجيلاني" بيحث عن شريك أخت أو أخ رجل أعمال مسلم / مسلمة - لا المال - لعمل
    (1) Madinah Browser in 130+ native languages to save Muslim children
    (2) Mecca Browser 130+ native languages to save Muslim
    (4) International Muslim wallet 130+ native languages
    since he lost 10 pounds in wise.com and $50 in paypal
    (1) متصفح المدينة المنورة بأكثر من 130 لغة أصلية لإنقاذ أطفال المسلمين وتعليمهم مجانا
    (2) متصفح مكة المكرمة بأكثر من 130 لغة أصلية لإنقاذ المسلمين
    (4) محفظة المسلمين الدولية بأكثر من 130 لغة أصلية
    منذ أن خسر 10 جنية استرليني في موقع wise.com و50 دولارًا في باي بال
    والله المستعان وعليه التكلان

  4. #4
    الصورة الرمزية Algo_Master
    Algo_Master متواجد حالياً مشرف المتداول العربي
    تاريخ التسجيل
    Dec 2011
    الإقامة
    مصر
    المشاركات
    1,091

    افتراضي

    اقتباس المشاركة الأصلية كتبت بواسطة ahmadali_muh مشاهدة المشاركة
    جزاكم الله تعالى خيرا علي حسن استضافتكم وأبشركم بمزيد من الأعمال الإختراعية ولا سيما من أعمال "شيخ عبد القادر الجيلاني" وعمره 11 سنة وهو ماهر بفضل الله تعالى في القرآن الكريم الذي برمج نشره في 133 لغة
    https://muhammad.com/137-koran/index.html
    والحديث الشريف
    https://youtu.be/gspz_81TrHk?si=WPr072OVKFQCSOhm
    حيث نقل منهج الأزهر كاملا 75 كتابا مجانا online
    https://Muhammad.com/class-access/index.html
    ولغة بايثون في تصميم الذكاء الإصطناعي لنظام المستشفيات
    https://mydsolutions.com/dokter
    ونظام تجارة الأسهم والسندات - تحت التصميم هنا:
    https://seabankasia.mydsolutions.com/trade
    وهو بصدد تصميم
    Black Box Trading Box
    emulating Jim Simon
    أكرر شكري على دماثة خلقكم وحسن طويتكم وصفاء سريرتكم
    ملحوطة: "شيخ عبد القادر الجيلاني" بيحث عن شريك أخت أو أخ رجل أعمال مسلم / مسلمة - لا المال - لعمل
    (1) Madinah Browser in 130+ native languages to save Muslim children
    (2) Mecca Browser 130+ native languages to save Muslim
    (4) International Muslim wallet 130+ native languages
    since he lost 10 pounds in wise.com and $50 in paypal
    (1) متصفح المدينة المنورة بأكثر من 130 لغة أصلية لإنقاذ أطفال المسلمين وتعليمهم مجانا
    (2) متصفح مكة المكرمة بأكثر من 130 لغة أصلية لإنقاذ المسلمين
    (4) محفظة المسلمين الدولية بأكثر من 130 لغة أصلية
    منذ أن خسر 10 جنية استرليني في موقع wise.com و50 دولارًا في باي بال
    والله المستعان وعليه التكلان
    توقيع العضو
    تخيل _ أبتكر _ شخبط _ برمج _ أختبر _ عدل _ أختبر _ أنجح

  5. #5
    الصورة الرمزية bobcat
    bobcat غير متواجد حالياً عضو المتداول العربي
    تاريخ التسجيل
    Aug 2024
    الإقامة
    السعودية
    المشاركات
    51

    افتراضي

    يعطيكم العافية اخواني

الاوسمة لهذا الموضوع


1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17